The International Smart Grid Action Network

September 18, 2012

David Elzinga, International Energy Agency
Desk Officer, ISGAN Executive Committee
Outline

• Who is ISGAN?
• What are our main initiatives?
• Points of view on Renewable integration and DG
What and Why is ISGAN?

A mechanism for bringing high-level government attention and action to accelerate the development and deployment of smarter electricity grids around the world.

ISGAN…

• Sponsors activities that build a **global understanding** of smart grids, **address gaps** in knowledge and tools, and **accelerate Smart Grid deployment**

• Builds on the momentum of and knowledge created by the **substantial global investments** being made in smart grids

• Is organized as a task-shared **IEA Implementing Agreement** (2011)

• Was launched as an initiative of the **Clean Energy Ministerial** (2010)

• Fulfills a key recommendation in the **Smart Grids Technology Action Plan** (released by Major Economies Forum Global Partnership, 2009)

• **Leverages cooperation** with other initiatives and Implementing Agreements
ISGAN’s Formal Structure

- ISGAN continues its relationship with the CEM.

- ISGAN is formally organized as the IEA Implementing Agreement for a Co-operative Programme on Smart Grids (ISGAN).

- ISGAN is managed by its Executive Committee (ExCo)
 - Consists of representatives from all Participants

- ISGAN is supported by a Secretariat at the Korea Smart Grid Institute
 - Email address: isgan@smartgrid.or.kr

- The ISGAN community includes representatives of governments, transmission and distribution system operators, national laboratories and research institutions, power generators, and more.

- Projects are largely task-shared through Participants’ in-kind contributions. However, ISGAN has a common fund for certain joint expenses at its Secretariat.

ISGAN Website: http://iea-isgan.org
Current ISGAN Participants*

<table>
<thead>
<tr>
<th>Country</th>
<th>Flag</th>
<th>Country</th>
<th>Flag</th>
<th>Country</th>
<th>Flag</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australia</td>
<td></td>
<td>Ireland</td>
<td></td>
<td>Sweden</td>
<td></td>
</tr>
<tr>
<td>Austria</td>
<td></td>
<td>Italy</td>
<td></td>
<td>Switzerland</td>
<td></td>
</tr>
<tr>
<td>Belgium</td>
<td></td>
<td>Japan</td>
<td></td>
<td>U.K.</td>
<td></td>
</tr>
<tr>
<td>Canada</td>
<td></td>
<td>Korea</td>
<td></td>
<td>U.S.</td>
<td></td>
</tr>
<tr>
<td>China</td>
<td></td>
<td>Mexico</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Finland</td>
<td></td>
<td>The Netherlands</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>France</td>
<td></td>
<td>Norway</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Germany</td>
<td></td>
<td>Russia</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>India</td>
<td></td>
<td>Spain</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* i.e. Signatories to the Implementing Agreement
Future members and collaboration

<table>
<thead>
<tr>
<th>In Process of Joining the Implementing Agreement</th>
</tr>
</thead>
<tbody>
<tr>
<td>European Commission</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Invited to Join the Implementing Agreement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brazil</td>
</tr>
<tr>
<td>Denmark</td>
</tr>
<tr>
<td>South Africa</td>
</tr>
<tr>
<td>Turkey</td>
</tr>
</tbody>
</table>

GSGF is an international initiative among national and regional smart grid stakeholder associations

Launched with ISGAN at first CEM in July 2010

Strong interests in inventories, case studies and tools
Current ISGAN Work Portfolio

Foundational Projects

Annex* 1: Global Smart Grid Inventory
Led by U.S. – DOE/E2RG

Annex 2: Smart Grid Case Studies
Led by Korea - KERI

Annex 3: Benefit-Cost Analyses and Toolkits
Led by Italy – RSE SpA

Annex 4: Synthesis of Insights for Decision Makers
Led by U.S. & Korea – DOE/NREL & KSGI

New Projects**

Annex 5: Smart Grid International Research Facility Network (SIRFN)
Led by U.S. – DOE/Sandia NL

Annex 6: Power T&D Systems
Led by Sweden & Norway – STRI AB

* “Annex” = Major Project

** Approved March 2012

27-Sep-12
Central Question Driving the Foundational Annexes

How do we move international collaboration on smarter grids from here…

Annex 1: Global Smart Grid Inventory
Annex 2: Smart Grid Case Studies
Annex 3: Benefit-Cost Analyses and Toolkits
Annex 4: Synthesis of Insights for Decision Makers

* “Annex” = Major Project

Broad “Smart Grid” Concept

Specific Applications & Policies

…to here?

27-Sep-12
Annex 1: Smart Grids
Motivating Drivers

24 Smart Grid Motivating Drivers in 7 Categories
+ 1 User-specified Driver in Each Category (shown as “Other”)

Reliability
- Reliability improvements
- Power quality improvements
- Power restoration improvements
- Transmission adequacy
- Generation adequacy
- Other

Efficiency
- System efficiency improvements (reduction in peak load, T&D losses, etc.)
- Optimizing asset utilization
- Energy efficiency improvements
- Enabling new products, services, and markets
- Enabling customer choice and participation
- Other

Economic
- Economic advantages
- Government incentives
- Revenue collection and assurance improvements
- Reducing operating and maintenance costs
- Other

Environmental
- Renewable energy standards or targets
- Environmental advantages
- Regulatory compliance
- Other

Security
- National security concerns
- Enhanced power system resiliency to natural and human threats
- Other

Safety
- Safety improvements
- Other

Crosscutting
- Aging workforce concerns
- Aging infrastructure concerns
- Rural electrification
- Job creation
- Other

Drivers drawn from the IEA Smart Grids Technology Roadmap, the EPRI Electric Sector Framework for the Future, the Galvin Electricity Initiative reports, and the ESTA International, LLC report for the DOE on "International Smart Grid Strategic Opportunity Assessment," with incorporation of ISGAN member feedback.
Annex 1: Mapping Drivers to Technologies

<table>
<thead>
<tr>
<th>Driver</th>
<th>Ranking</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reliability</td>
<td></td>
</tr>
<tr>
<td>Reliability improvements</td>
<td></td>
</tr>
<tr>
<td>Power quality improvements</td>
<td></td>
</tr>
<tr>
<td>Power restoration improvements</td>
<td></td>
</tr>
<tr>
<td>Transmission adequacy</td>
<td></td>
</tr>
<tr>
<td>Generation adequacy</td>
<td></td>
</tr>
<tr>
<td>Efficiency</td>
<td></td>
</tr>
<tr>
<td>System efficiency improvements</td>
<td></td>
</tr>
<tr>
<td>Optimizing asset utilization</td>
<td></td>
</tr>
<tr>
<td>Energy efficiency improvements</td>
<td></td>
</tr>
<tr>
<td>Enabling new products</td>
<td></td>
</tr>
<tr>
<td>Enabling customer choice</td>
<td></td>
</tr>
<tr>
<td>Economic</td>
<td></td>
</tr>
<tr>
<td>Economic advantages</td>
<td></td>
</tr>
<tr>
<td>Government incentives</td>
<td></td>
</tr>
<tr>
<td>Revenue collection</td>
<td></td>
</tr>
<tr>
<td>Reducing operating and maintenance costs</td>
<td></td>
</tr>
<tr>
<td>Environmental</td>
<td></td>
</tr>
<tr>
<td>Renewable energy standard</td>
<td></td>
</tr>
<tr>
<td>Environmental advantage</td>
<td></td>
</tr>
<tr>
<td>Regulatory compliance</td>
<td></td>
</tr>
<tr>
<td>Security</td>
<td></td>
</tr>
<tr>
<td>National security concern</td>
<td></td>
</tr>
<tr>
<td>Enhanced power system security</td>
<td></td>
</tr>
<tr>
<td>Safety</td>
<td></td>
</tr>
<tr>
<td>Safety improvements</td>
<td></td>
</tr>
<tr>
<td>Crosscutting</td>
<td></td>
</tr>
<tr>
<td>Aging workforce concern</td>
<td></td>
</tr>
<tr>
<td>Aging infrastructure concern</td>
<td></td>
</tr>
<tr>
<td>Rural electrification</td>
<td></td>
</tr>
<tr>
<td>Job creation</td>
<td></td>
</tr>
</tbody>
</table>

[Table and diagram showing mapping of drivers to technologies]
Annex 2: Smart Grid Case Studies
Objectives and Approach

• Assess best practice examples of case studies — IN PROCESS

• Develop and refine a common case study template and methodological framework — IN PROCESS

• Apply template to selected projects (qualitative assessment)
Annex 3: Benefit-Cost Analyses and Toolkits: Objectives and Approach

• Assess, modify, and apply methodologies to measure the present level of maturity of networks (i.e., the “smartness”)
 — DEVELOPED METHODOLOGY BEING PILOTED/COMMPARED

• Assess, modify, and apply existing benefit-cost methodologies and tools — IN PROCESS

• Develop new methodologies, as needed

• From these analyses, develop appropriate toolkits (including definition of metrics/KPIs)
 ➢ Range of levels targeted: From high-level, broad-based methodologies to more detailed system-level approaches to project- or technology-level approaches
 ➢ Builds on metrics and data identified by Annexes 1 & 2, and other sources
In short: Knowledge management and info sharing by design

• Develop a platform that compiles smart grid concepts from high-quality sources and makes them accessible to policymakers (e.g., online glossary) — IN PROCESS; Beta version available at http://en.openei.org/wiki/ISGAN_Smart_Grid_Glossary

• Produce brief, timely analytical reports that clarify important issues or raise key questions in smart grid policy and deployment — ONGOING

• Establish platforms (or augment existing ones) for knowledge management and collaboration among ISGAN participants

• Develop and implement other tools for collaboration and information sharing — ONGOING; webinar series in development

27-Sep-12 - Examples of products can be found in backup slides -
New ISGAN Annexes 5 & 6

- **SIRFN** will be a coordinated network of Smart Grid research and test-bed facilities in countries participating in ISGAN.

- The central driving question is how can ISGAN structure this network to better evaluate Smart Grid concepts and technologies in that all-important niche between R&D and commercialization.

- Entails assessment of technical and policy needs for T&D systems as well as the interfaces between the two, with a focus on renewables integration.

- From electrical generators to end consumers, the sources and uses of electric power are becoming much more varied and complex. There is an urgent need to make T&D systems smarter to ensure unchanged or improved security, reliability and quality of supply.
RENEWABLE ENERGY ALONE WILL NOT KEEP THE LIGHTS ON Massive introduction of RES requires more resilient and intelligent electrical grids and systems to ensure unchanged or improved security, reliability and quality of supply.

New requirements on Power Transmission and Distribution Systems both with respect to new and increased transmission capacity as well as improved visibility and controllability for balancing of intermittent power production and demand response.

There is a need to put more focus on the complete power system behaviour and how new, smarter technologies, combined with smarter governmental and regulatory policies can facilitate the necessary transition to a clean energy system.
Annex 6: Power T&D Systems

- Establish a long term vision for the development of “smarter” Power T&D systems – and support implementation processes
 - Start with transmission systems
 - Expand to include interactions with distribution networks.
- Improve understanding of specific Smart Grid technologies applicable to or influencing system performance, transmission capacities, operation practices.
- Promote adoption of enabling regulatory and government policies.
- Use a systems-level approach wherever possible.
Annex 6: Key Questions

IMPACT: What are the emerging issues influencing the policy & regulation for the Power T&D system and why are they important to resolve?

INTEGRATION: What market mechanisms and tools are needed to plan the expansion of T&D systems with a large intermittent RES and who is involved to make this happen?

INNOVATION: Which are the most interesting and promising technology developments for the smarter T&D System and how can we introduce them in a reliable and efficient way?

INTERACTION: Which parts of the T&D system are interdependent and require coordinated System Operation Management? When is it needed to initiate this process.

IMPLEMENTATION: What solutions can be deployed to make the T&D system more intelligent and flexible. - Where does this give the largest improvement / investment ratio?
Annex 6: Some initial conclusions

- Three big challenges with the electricity system:
 - Renewables integration
 - Peak Demand/Demand
 - Ageing infrastructure
- System flexibility will be required to a degree not needed in the past
- Current regulatory systems were fit for old power systems, revolutionary approach needed – i.e. remuneration approach
- More co-ordination is needed between TSO’s and DSO’s
- Technology will enable better sharing of data between TSO’s and DSO’s
- Storage ownership/operation ability by SO’s unknown
- VPP’s could play a significant role and included storage
- Storage will play a role in not just balancing – but also ancillary services
- More quantification of flexibility due to RES integration is needed
• ISGAN Website (New!): http://iea-isgan.org
 o Three new white papers, released in April 2012, available.

• ISGAN Secretariat Email: isgan@smartgrid.or.kr

• ISGAN Smart Grid Glossary “Beta”:
 http://en.openei.org/wiki/ISGAN_Smart_Grid_Glossary
 o Needs addition of content from around the world.
 o Wiki platform – easy to edit and augment.

• CEM Website: http://cleaneenergyministerial.org

• IEA page on Implementing Agreements:
 http://www.iea.org/techno/index.asp
Thank you!

Please don’t hesitate to contact me if you have questions!

Russ Conklin
Office of Climate Change Policy and Technology
U.S. Department of Energy
+1 (202) 586 8339
russell.conklin@hq.doe.gov
ISGAN is One of 13 Initiatives under the Clean Energy Ministerial (CEM)

- International Smart Grid Action Network
- Super-Efficient Equipment and Appliance Deployment Initiative
- Electric Vehicles Initiative
- Bioenergy Working Group
- Carbon Capture Use and Storage Action Group
- Clean Energy Education and Empowerment Women’s Initiative
- Clean Energy Solutions Centers
- Global Superior Energy Performance Partnership
- Multilateral Solar and Wind Working Group
- Solar and LED Energy Access Program
- Sustainable Development of Hydropower Initiative
- 21st Century Power Partnership (new in 2012)
- Global Sustainable Cities Network (new in 2012)
ISGAN’s Relationship with the Former ENARD Implementing Agreement

• Recognizing alignment in program and interests, and with agreement of both Executive Committees (Oct. ’11), ISGAN and ENARD merged (completed Feb. ‘12)

 • Purpose is to extend ENARD’s excellent work in its Annexes II & IV
 • Initial Annex 6 work program covers transmission (ENARD Annex IV)

• Now, ISGAN developing path forward to extend ENARD’s distribution networks work (Fmr. ENARD Annex II)
 • Work to complement program in other IEA IAs (e.g. PVPS IA)

• ALSO – Former ENARD Chair & Vice Chair serve in emeritus positions on ISGAN Executive Committee
Annex 4 Product: Message to CEM3

Synthesis of Insights for CEM3:
Renewable Energy Alone Will Not Keep the Lights On!

The massive introduction of renewables requires more resilient and intelligent electrical grids and systems to ensure security of supply and power quality.

Smart Grids are a Key Enabling Infrastructure for Renewable Energy.

Ongoing, transformational changes in the resource base of power production, consumer demands and energy-use behaviors require new, integrated approaches. Power producers, utilities, users, decision makers and society at large will all be forced to rethink and adapt to these new paradigms.

The transition to clean and secure energy technologies is achievable if...
- The technical and policy needs for smarter system support of renewable energy are well-known and met.
- Investments in electricity networks are timely since delay will increase system risks and the ultimate costs to society.
- New, available technologies are deployed to increase network capacity within existing corridors and supply new on- and offshore interconnections.
- Smarter grid technologies are deployed to improve overall power system efficiency and to balance supply, demand, and storage in real time.
- Guiding principles for the development of smarter grids are shared and based on holistic system approaches, a regulatory shift of focus to longer terms, the recognized need for new innovation and workforce competencies, and international cooperation.

Source: Key messages identified during ISGAN’s recent merger with the IEA Implementing Agreement for Electricity Networks Analysis, Research and Development (ENARD).

Smart Grid is a concept and vision that captures a range of advanced information, sensing, communications, control, and energy technologies. Taken together, these result in an electric power system that can intelligently integrate the actions of all connected users – from power generators to electricity consumers to those that both produce and consume electricity (“prosumers”) – to efficiently deliver sustainable, economic and secure electricity supplies.

Source: Definition adapted from the European Technology Platform Smart Grid (ETPSG).

Why Smart Grids?

From electrical generators to end consumers, the sources and uses of electric power are becoming much more varied and complex. To address this trend, the power sector has already begun integrating Smart Grid technologies and concepts into their networks, a process that will ultimately take decades.

Whether building new grids or improving existing structure, Smart Grid is a key platform for 21st century competitiveness.

Effectively implemented, smart grids are MORE:

- Reliable. Smart grids can maintain or improve reliability and decrease the frequency and duration of outages.
- Secure. Smart grids can provide resiliency in the case of disturbances, natural or otherwise.
- Economical. Smart grids can cut relative utility and consumer costs.
- Efficient. Smart grids can increase operating efficiencies and use of existing infrastructure and reduce network losses.
- Environmentally Friendly. Smart grids can enable integration of high shares of renewable energy, electric vehicles and electric heat, as well as improved energy efficiency and load management.
- Safe. Smart grids can increase public and worker safety.

2GtCO₂/yr

Smart grids have the potential to help reduce global CO₂ emissions by over 2 gigatonnes per year by 2050. (IEA 2010)
Smart Grid

A term used to describe the digital technology that allows for two-way communication between the utility and its customers, and the sensing along the transmission lines, and other technologies that have been (or are planned to be) applied to the existing electric grid. The computer processing, remote control, and automation processes used by the smart grid have been employed by other industries for decades. The technological changes and associated digital devices are beginning to be used both by the electric utilities and by electricity consumers.[1][2]

Automatic connection to Wikipedia (and other resources) via semantic properties & Linked Open Data

Smart grid is a type of electrical grid which attempts to predict and intelligently respond to the behaviour and actions of all electric power users connected to it - suppliers, consumers and those that do both - in order to efficiently deliver reliable, economic, and sustainable electricity services. In Europe, the smart grid is conceived of as employing innovative products and services together with intelligent monitoring, control, communication, and self-healing technologies in order to: Better facilitate the connection and operation of generators of all sizes and technologies; Allow consumers to play a part in optimising the operation of the systems; Provide consumers with greater information and options for choice of supply; Significantly reduce the environmental impact of the whole electricity supply system; Maintain or even improve the existing high levels of system reliability, quality and security of supply; Maintain and improve the existing services efficiently; In the United States, the Smart Grid concept is defined as the modernisation of the nation’s electricity transmission and distribution system to maintain a reliable and secure electricity infrastructure that can meet future demand growth and to achieve each of the following, which together characterize a Smart Grid: (1) Increased use of digital information and controls technology to improve reliability, security, and efficiency of the electric grid. (2) Dynamic optimization of grid operations and resources, with full cyber-security. (3) Deployment and integration of distributed resources and generation, including renewable resources. (4) Development and incorporation of demand response, demand-side resources, and energy-efficiency resources. (5) Deployment of “smart” technologies (real-time, automated, interactive technologies that optimize the physical operation of appliances and consumer devices) for metering, communications concerning grid operations and status, and distribution automation. (6) Integration of “smart” appliances and consumer devices. (7) Deployment and integration of advanced electricity storage and peak-shaving technologies, including plug-in electric and hybrid electric vehicles, and thermal-storage air conditioning. (8) Provision to customers of timely information and control options. (9) Development of standards for communication and interoperability of appliances and equipment connected to the electric grid, including the infrastructure serving the grid. (10) Identification and lowering of unreasonable or unnecessary barriers to adoption of smart grid technologies, practices, and services.

Related Terms

- Definition: Electric grid
- Definition: Electricity generation

References

2. http://www.smartgrid.gov/the_smart_grid#smart_grid
Annex 4 Products: White Papers

INTEGRATION OF V.R.R.
- ACTIVATE DEMAND-SIDE INTELLIGENCE
- ACTIVATE DELIVERY-SIDE INTELLIGENCE
- ACTIVATE MARKETS
- ENABLE DG AND MICROGRIDS
- IMPROVE TSO-DSO COORDINATION
- IMPROVE TSO CONTROL ROOMS
- ENSURE ALIGNMENT OF SG ROADMAP WITH VRR
- EVALUATE VRR INTEGRATION IN CONTEXT OF ALL INTEGRATION SOLUTIONS

CONSUMER BENEFITS AND COSTS
- DESCRIPTION OF CONSUMER BENEFITS FROM SMART GRIDS
- CONSUMER COST ALLOCATION IN DIFFERENT ELECTRICAL SYSTEM ORGANIZATION CONTEXT
- RECOMMENDATIONS FOR CALCULATING COST AND BENEFITS
- BEST PRACTICES FOR CONSUMER ENGAGEMENT

CYBERSECURITY
- PRIORITIZE EFFORTS TO ADVANCE REGULATORY AND INDUSTRY BEST PRACTICES IN CYBER SECURITY ECONOMICS IN THE SMART GRID CONTEXT
- ESTABLISH A FORUM TO SHARE BEST PRACTICES IN CULTIVATING ORGANIZATIONAL CHANGE AND COST-EFFECTIVE TECHNICAL INNOVATIONS IN SUPPORT OF CYBER SECURITY IN THE SMART GRID CONTEXT
- ESTABLISH A FORUM TO SHARE BEST PRACTICES IN POLICY DEVELOPMENT IN THE AREA OF CUSTOMER DATA PRIVACY IN THE SMART GRID CONTEXT
ISGAN Recent & Upcoming Schedule

- **Week of 26 March 2012 ● Mexico City, Mexico**
 Joint IEA/ISGAN Workshop: “Smart Grids in Distribution Networks: How2Guide drafting workshop” and 3rd ISGAN ExCo Meeting

- **25-26 April 2012 ● London, UK**
 Third Clean Energy Ministerial meeting

- **21 May 2012 ● Bregenz, Austria**

- **18-19 June 2012 ● Milan, Italy**
 ISGAN Workshops (Annexes 3 & 6)

- **10-11 July 2012 ● Milan, Italy**

- **Week of 24 September 2012 ● Nice, France**
 24 September: Annex meetings
 26-28 September: 4th ISGAN ExCo Meeting

- **3 December 2012 ● Berlin, Germany**
 Annex 5, SIRFN Workshop (as part of 5th Int’l Conference on Integration of Renewables and Distributed Energy Resources)