Vienna University of Technology

Biomassevergasung und Gasverwertung

Dr. Reinhard Rauch

Highlights der Bioenergieforschung Nationale und Internationale Ergebnisse zu den IEA Schwerpunkten

28. April 2009

- IEA Bioenergy Task33 Thermal gasification of Biomass
- Austrian research in the area of advanced gasification

IEA Bioenergy Task 33

Institute of Chemical Engineering

- The objectives of Task 33 are to review and exchange information on biomass gasification (BMG) research, development, demonstration, and commercialization
- Participating countries (12): Austria, Canada, Denmark, European Commission, Finland, Germany, Italy, The Netherlands, New Zealand, Sweden, Switzerland, and the USA
- Task Leader: Dr. Suresh P. Babu, Gas Technology Institute, Des Plaines, IL., USA.
- Actual Triennium is from 2007-2009, Proposal for next Triennium 2010-2012 is delivered to ExCo
- More details at http://www.ieatask33.org

Working group: Zero Emission Energy Technology

Definition:

Gasification is a process by which either a solid or liquid carbonaceous material, containing mostly chemically bound carbon, hydrogen, oxygen, and a variety of inorganic and organic constituents, is reacted with air, oxygen, and/or steam. The reactions provide sufficient exothermic energy to produce a primary gaseous product containing mostly CO, H_2 , CO_2 , $H_2O(g)$, and light hydrocarbons laced with volatile and condensable organic and inorganic compounds.

Main reactions: devolatlisation:

Boudouard-reaction Heterogenous water gas shift Homogenous water gas shift Methanation C, CH_4 , CO, CO_2 , H_2 , H_2O C + $CO2 \leftrightarrow 2 CO$ $\Delta H = 159,9 \text{ kJ/mol}$ C + $H2O \leftrightarrow CO + H2$ $\Delta H = 118,5 \text{ kJ/mol}$ CO + $H2O \leftrightarrow CO2 + H2$ $\Delta H = -40,9 \text{ kJ/mol}$ C+ $2H2 \leftrightarrow CH4$ $\Delta H = -87,5 \text{ kJ/mol}$

Overview on usage

Institute of Chemical Engineering

Efficiencies for electricity

Institute of Chemical Engineering

Learning curve

Institute of Chemical Engineering

Wind Power

Institute of Chemical Engineering

Working group: Zero Emission Energy Technology

Costs pr. kWh reduced to ¹⁄₄ (by 75 %) from 1973 to 2003

Classification of Gasifiers

Institute of Chemical Engineering

Working group: Zero Emission Energy Technology

Gasifiers can be classified as:

according to the gasification agent

- air-blown gasifiers
- oxygen gasifiers
- steam gasifiers

according to heat for gasification:

- autothermal gasifiers
- allothermal gasifiers

according to the design of fuel bed:

- fixed bed
- fluidised bed
- entrained flow gasifiers
- staged gasifiers

Gasification in Austria

Institute of Chemical Engineering

- Research groups:
 - Graz University of Technology Institute of Thermal Engineering
 - Graz University of Technology Institute for Apparatus Design, Particle Technology and Combustion Technology
 - Joanneum Research Graz Department of Energy Research
 - Vienna, University of Technology, Institute of Chemical Engineering
 - FJ-BLT Wieselburg (HBLFA)
 - Bioenergy 2020+ (Austrian Bioenergy Centre, Renet Austria)
- Implementation:
 - Biomass CHP Güssing
 - BioSNG Demonstration
 - Pyrotherm CHP Güssing
 - Biomass CHP Oberwart

Heat Pipe Refomer (TU Graz)

Institute of Chemical Engineering

Dual fluidised bed steam gasification

Institute of Chemical Engineering

CHP-PLANT GÜSSING

Institute of Chemical Engineering

Gas Composition (after gas cleaning)

Institute of Chemical Engineering

Working group: Zero Emission Energy Technology

Main Components		
H ₂	%	35-45
СО	%	22-25
CH₄	%	~10
CO ₂	%	20-25
Minor Components		
	%	2-3
C ₂ H ₆	%	~0.5
C ₃ H ₆	%	~0,4
O ₂	%	< 0,1
N ₂	%	1-3
C ₆ H ₆	g/m³	~8
C ₇ H ₈	g/m³	~0,5
C ₁₀ H ₈	g/m³	~2
TARS	mg/m°	20-30

Possible poisons			
H ₂ S	mgS/Nm³	~200	
Mercaptans	mgS/Nm³	~30	
Thiophens	mgS/Nm³	~7	
HCI	ppm	~3	
NH3	ppm	500-1000	
Dust	mg/Nm³	< 20	

 $H_2:CO = from 1.5:1 to 2:1$

Working group: Zero Emission Energy Technology

Renewable liquid fuels

Fischer-Tropsch Syntheses

BIOMASS-TO-FISCHER-TROPSCH

Theorie of FT Synthesis Anderson Schulz Flory distribution by weight

Institute of Chemical Engineering

$$Log(W_n / n) = n \log \alpha + const.$$

Working group: Zero Emission Energy Technology

Renewable natural gas

Synthetic natural gas (BioSNG)

BIOMASS-TO-SYNTHETIC-NATURAL-GAS

Schema BioSNG demonstration

Institute of Chemical Engineering

Current Status

Institute of Chemical Engineering

- Participation in IEA Bioenergy Task33 is very important for know how transfer in the area of biomass gasification
- There is successful research and demonstration in Austria
 - Biomass CHP Güssing with
 - Demonstration for production of BioSNG
 - Research in 2nd generation liquid biofuels (Fischer Tropsch synthesis)
 - Research on heat pipe reforming at TU Graz
 - Implementation of fixed bed gasifiers, like Pyroforce
- Gasification gives high potential for production of electricity, district heat, biofuels and chemicals
 - BioSNG, experiments of demonstration plant are ongoing
 - BioFiT, research ongoing, ready for scale up