

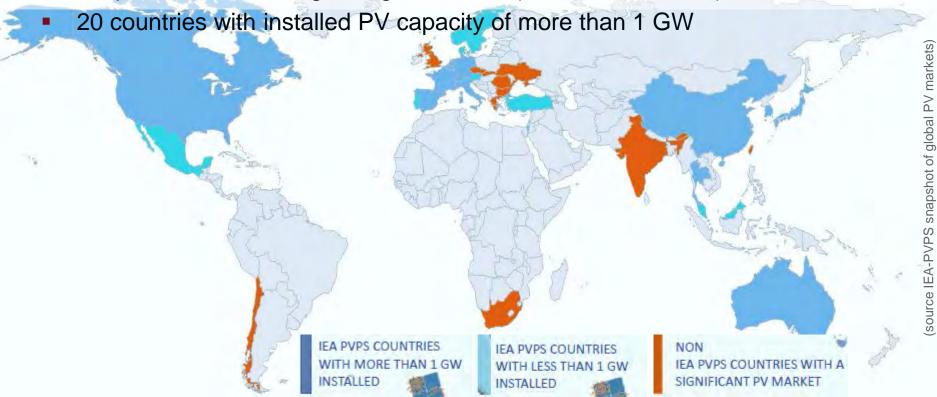
Netzanschlussregeln und Verbindungsstandards – eine wichtige Voraussetzung für hohe Photovoltaikdurchdringung Zusammenfassung der Ergebnisse des IEA-PVPS Task 14


DI Roland Bründlinger Austrian Institute of Technology GmbH Energy Department

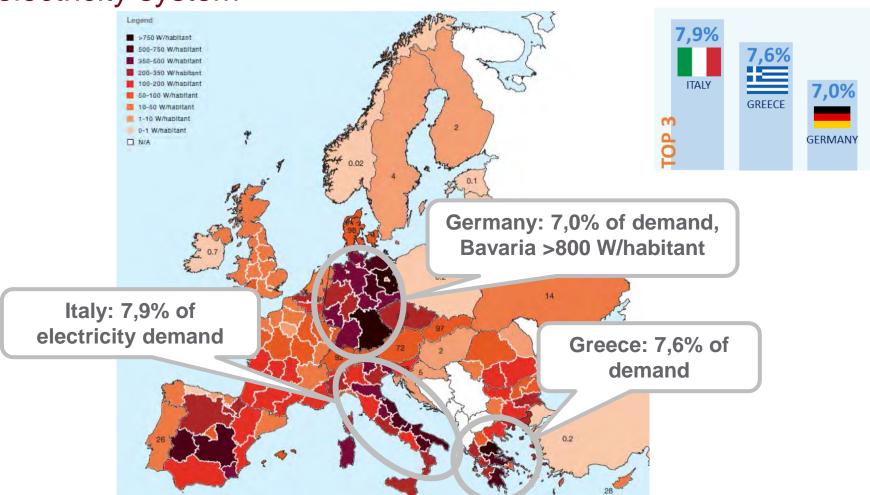
IEA-Vernetzungstreffen 2015 29. Oktober 2015

Content

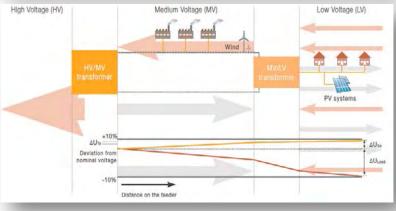
- Overview IEA-PVPS Task 14
 High penetration PV in Electricity
 Grids
- Standards and codes as key requirement for successful integration of PV
- Summary



High Penetration of PV in Electricity Grids A global trend


- 177 GW installed worldwide at the end of 2014
- PV penetration levels growing worldwide (+38.7 GW in 2014)

Europe leading integration of High Penetration of PV in the electricity system



High Penetration PV in electricity grids Key Integration Challenges

- PV integration challenges in the <u>overall</u> <u>power system</u>
 - Managing variability
 - Ensuring security of supply
 - Matching supply and demand
 - Ensuring frequency stability
- PV integration challenges on the <u>local</u> <u>distribution level</u>
 - Managing voltage profiles
 - Avoiding overloading of components
 - Transforming passive to active grids
 - Integrating PV in Smart Grids

Task 14: Overall objectives of this international collaboration

- Promote the use of grid connected PV as an important source in electric power systems also on a high penetration level where additional efforts may be necessary to integrate the dispersed generators in an optimum manner.
- Develop and verify mainly technical requirements for PV and electric power systems to allow for high penetrations of PV systems interconnected with the grid
- Discuss the active role of PV systems related to energy management and system control of electricity grids
- Reduce the technical barriers to achieve high penetration levels of distributed renewable energy systems on the electric power system

Task 14: Overall objectives of this international collaboration


- Discuss the market implications of technical solutions for the integration of PV at high penetration levels
- Discuss and develop new solutions for operation and grid planning for High
 PV Penetration scenarios
- Re-think existing rules-of-thumb and practices with respect to their validity with high-penetration PV
- Discuss the opportunities for PV to provide advanced grid support services for local as well as system wide use.
- Discuss the possible role of PV in a future Smart Grid

IEA PVPS Task 14: A global network, led by Austria

16 Countries

Broad expertise

Participants from

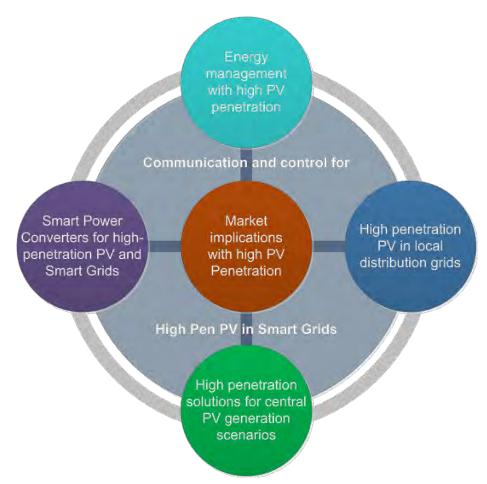
- Utilities, DNOs
- Industry, manufacturers, consultancies
- Applied research
- Universities
- Agencies

List of contacts: Link

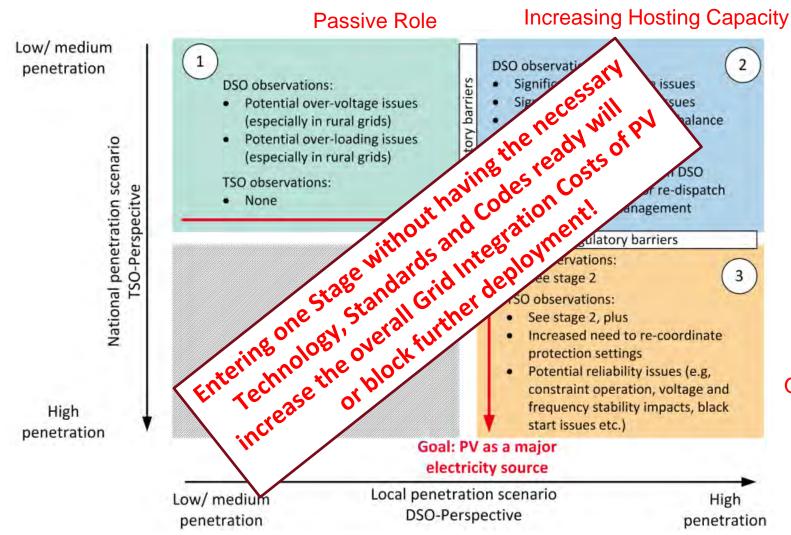
Industry association commission

European

Candidate countries



TEA PVPS Task 14 Organization and structure



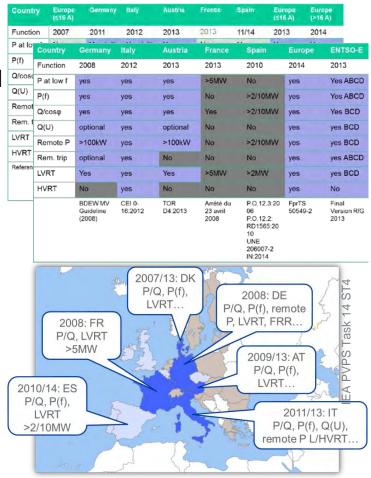
- Support PV integration on high penetration levels by
 - access to more transparent technical analyses
 - guidelines and best practices for industry, network operators, energy planners as well as authorities in the energy business
 - comprehensive international studies for high penetration PV
- Develop key methodologies for large scale PV integration
 - PV Power Forecast
 - Active management and control of grid integrated PV
 - Grid interconnection studies and planning
 - Technical standards and interconnection requirements
- Active dissemination of objective and neutral high-quality information
 - Task 14 Reports & Workshops
 - National information networks of Task 14 members

High Penetration Integration Model developed in PVPS Task 14

Integral
Part of
System
Operation

EA PVPS Task 14 ST2

Negative example: 50,2 Hz issue in Germany


- In the early 2000s, PV growth potential was not taken seriously by the responsible TSOs and DSOs in Germany
 - Philosophy: Small scale PV systems should behave passively and disconnect from grid at first sign of trouble
 - Standard requirement to set over-frequency protection of LV connected PV to 50.2 Hz
- The problem: In 2012, already 12.700 MW installed PV capacity (with 50.2 Hz setting) had been installed. However, the primary frequency reserve of whole continental Europe is only 3.000 MW
 - In a case of over-frequency event (f>50.2 Hz) up to 12.700 MW PV power could be lost, due to the fixed threshold value of 50.2 Hz → Danger for system stability
 - Retrofitting of about 9.000 MW installed PV capacity within three years (2012 – 2015) - In total about 300.000 individual PV systems

Task 14 work on Technical standards, grid codes and interconnection requirements

- Research and Investigations
 - What are the specific requirements for grid support by PV in certain countries?
 - Are these compatible with requirements with High-Pen PV?
 - How to they need to be adapted to accommodate High Pen PV
- Share experiences with local stakeholders
 - Inform them on necessary adaptations of local standards and codes Provide local Task 14 members working in grid code development with best practice examples from Task 14 member countries
- → Support local grid code development process by dissemination and awareness raising activities

Task 14 work on Technical standards, grid codes and interconnection requirements

- Reports:
 - Recommendations for managing the transition from One-Directional to Bi-Directional Distribution Grids
 - State-of-the-Art and advanced solutions for the transition of local distribution grids
- Task 14 utility workshops >500 participants
 - 12 workshops since 2010
 - Joint workshops with other IEA IAs
- Keynote and invited talks by Task 14 experts
 - International conferences
 - European events
 - >15 presentations in 2014-2015 alone
- Active support to Austrian national standardization (e-Control, OVE)

16

Standards and grid codes – a key requirements for the successful integration of high pen PV

- With PV and other RES changing from a marginal technology to a visible player in the electricity market, appropriate standards and codes are urgently needed
- Numerous countries already implemented advanced functionalities of DER in their national grid codes and require DER to provide
 - Steady state and dynamic voltage support
 - Frequency control capabilities
 - On-demand response via remote control and communication
- Coordinated requirements needed for safe and reliable grid integration
- IEA-PVPS Task 14, led by AIT, Austria supports this development by
 - International collaboration
 - Research
 - Dissemination and awareness raising

Thank you for your attention

Task 14 Publications: http://www.iea-pvps.org/index.php?id=58

Task 14 Workshops: http://www.iea-pvps.org/index.php?id=323

Roland Bründlinger
AIT Austrian Institute of Technology
Giefinggasse 2, 1210 Wien, Austria
roland.bruendlinger@ait.ac.at

Selected European Country Requirements LV Connection

Country	Europe (≤16 A)	Germany	Italy	Austria	France	Spain	Europe (≤16 A)	Europe (>16 A)
Function	2007	2011	2012	2013	2013	11/14	2013	2014
P at low f	No	Yes (all)	Yes (all)	Yes	No	No	Yes	Yes
P(f)	No	Yes (all)	Yes (all)	Yes	Yes*	No	Yes	Yes
Q/cosφ	No	>3.68kVA	>3 kVA	>3.68kVA	No	No	Yes	Yes
Q(U)	No	No	>6 kVA	Yes*	No	No	Yes	Yes
P(U)	No	No	Optional	Yes*	No	No	No	Optional
Remote P	No	>100kW	>3 kVA	>100kW	No	No	No	Yes
Rem. trip	No	No	Yes	No	No	No	No	Yes
LVRT	No	No	>6 kVA	No	No	No	No	Yes
HVRT	No	N/A	No	No	No	No	No	Yes
Reference	EN 50438 2007	VDE AR N 4105: 2011	CEI 0- 21:2014	*TOR D4:2015 (not yet published)	* ERDF- NOI- RES_13E Version 5 - 30/06/2013	RD 1699/2011 206007-1 IN:2013	EN 50438 2013	FprTS 50549- 1:2014

Selected European Country Requirements MV Connection

Country	Germany	Italy	Austria	France	Spain	Europe	ENTSO-E
Function	2008	2012	2013	2013	2010	2014	2013
P at low f	yes	yes	yes	>5MW	No	yes	Yes ABCD
P(f)	yes	yes	yes	No	>2/10MW	yes	Yes ABCD
Q/cosφ	yes	yes	yes	Yes	>2/10MW	yes	Yes BCD
Q(U)	optional	yes	yes*	No	No	yes	yes BCD
Remote P	>100kW	yes	>100kW	No	>2/10MW	yes	yes BCD
P(U)	No	Optional	yes*	No	No	Optional	No
Rem. trip	optional	yes	No	No	No	yes	yes ABCD
LVRT	Yes	yes	Yes	>5MW	>2MW	yes	yes BCD
HVRT	No	yes	No	No	No	yes	No
28.10.2015	BDEW MV Guideline (2008)	CEI 0- 16:2014	*TOR D4:2015 (not yet published)	Arrêté du 23 avril 2008	P.O.12.3:20 06; P.O.12.2: RD1565:20 10; UNE 206007-2 IN:2014	FprTS 50549-2	Final Version RfG 2013