

Biorefining of Wood Perspectives for a Broad Product Portfolio

Diethard Mattanovich

Department of Biotechnology University of Natural Resources and Life Sciences Vienna

BOKU Joint Biorefinery – Biotechnology Concept

- Joint efforts are needed:
- BOKU Network for Bioconversion of Renewables

www.boku.ac.at/bioconversion.html

Spatially Explicit Supply Chain Modelling

University of Natural Resources and Life Sciences, Vienna Institute for Sustainable Economic Development

Results

- Optimal locations and capacities of biorefineries
- Economic feasibility and sensitivity of crucial input parameters i.e. prices, costs, yields
- Life-cycle GHG–emissions of biorefineries and GHG-mitigation potential
- Policy evaluation Assessing cost-effective policies to support environmentally friendly biorefineries

Lignocellulose as Carbon Source

University of Natural Resources and Life Sciences, Vienna Department of Biotechnology

Diethard Mattanovich and Michael Sauer

Lignocellulose as Carbon Source

University of Natural Resources and Life Sciences, Vienna Department of Biotechnology

Commercial products used:

- Cellic CTec 2 (Novozymes)
- Accellerase 1500 (Genencor)

Project: Lignorefinery FFG "Intelligente Produktion"

(7 types of wood)

50°C pH not regulated (3,7-3,5) 150 rpm 10% (w dry/v) No accessory enzyme Up to 7 days of incubation

Diethard Mattanovich and Michael Sauer

Functional Materials from Renewable Resources: LIGNIN

Lignin extraction

methanol/water or dioxane

Thomas Rosenau and Falk Liebner

Candida lignohabitans: a new yeast for fermentation products

University of Natural Resources and Life Sciences, Vienna Department of Biotechnology

- Non-conventional yeast, belonging to the *Sugiyamaella* clade
- ✓ Isolated from a decayed tree log (*Kurtzman*, 2007)
- ✓ Natural capability to ferment <u>xylose</u>

Growth on hydrolysed lignocellulosic materials

University of Natural Resources and Life Sciences, Vienna Department of Biotechnology

✓ The strain grows on sugars present in all the types of hydrolysed lignocellulosic material

Diethard Mattanovich and Michael Sauer

Engineered C. lignohabitans: Itaconic acid production on lignocellulose hydolysate

University of Natural Resources and Life Sciences, Vienna Department of Biotechnology

Introduction of one gene: cis-aconitate decarboxylase

Use of itaconic acid

- polymer industry
- synthetic fiber industry
- chemical production

1.4 g/l Itaconic acid

HO

.OH

Biotech Platform Strains and Processes

Nanocellulose from Biorefinery Residues

Universität für Bodenkultur Wien Department of Material Sciences and Process Engineering Institute of Wood Science and Technology

Adding value to plant biorefineries by extraction of nanocellulose from fibrous residue!

Nanocellulose: bio-based, renewable, as strong as carbon fiber

Applications: Polymer reinforcement, Coatings, Tuning Viscosity, Nanopaper, Membranes, Aerogels, and many more

Nanocellulosereinforced polymer

Hydrophobic/Antimicrobial functionalisation of lignocellulose: Mechanism

University of Natural Resources & Life Sciences Vienna Institute for Environmental Biotechnology

Treatment	Fluoro content %, (XPS)	Contact angle
4-(Trifluoromethoxy)phenol	0	48 °
4-(Trifluoromethoxy)phenol + laccase	3.21	58 °
4-(4-Fluorophenoxy)phenol	0	44 °
4-(4-Fluorophenoxy)phenol + laccase	6.39	88 °
4-Fluoro-2-methylphenol	0	52 °
4-Fluoro-2-methylphenol + laccase	0.26	58°

Georg Gübitz

Conversion of oligo(oxyethylene) lignin hydrogels into lignin aerogels of low thermal conductivity

Thomas Rosenau and Falk Liebner

Conversion of Lignin into Nitrogen-rich Artificial Humic Substances for Large-Scale Recultivation of Degraded Soils

Thomas Rosenau and Falk Liebner

Conversion of Lignin into Nitrogen-rich Artificial Humic Substances for Large-Scale Recultivation of Degraded Soils

Besides the humus-type structure, *N*-modified lignins contain different *N*-binding forms that mineralise in soil at different rates (slow nitrogen release)

- NH₄-N (short-term plant-available)
- Amide-N (mid-term plant-available)
- Strong organically bound nitrogen (long-term plant-available)

Advantages:

- prevents plants and soil from over-fertilization
- optimizes the efficiency of fertilization (economic aspects)
- avoids nitrogen leeching by seepage water (sandy soils)

Focus on thermo-chemical biomass conversion

Universität für Bodenkultur Wien Department of Material Sciences and Process Engineering Institute of Chemical and Energy Engineering

Summary and Acknowledgements

Research field	BOKU Department	Key Contact
Biomass availablility and transport logistics	Economics and Social Sciences	Erwin Schmid
Pretreatment, lignocellulose chemistry	Chemistry	Thomas Rosenau, Falk Liebner
Hydrolysis and Fermentation to value added chemicals	Biotechnology	Diethard Mattanovich, Michael Sauer
Nanocellulose	Material Sciences and Process Engineering	Wolfgang Gindl- Altmutter
Enzymatic functionalisation of cellulose and lignin	Agrobiotechnology	Georg Gübitz
Lignin upgrading	Chemistry	Thomas Rosenau, Falk Liebner
Thermo-chemical conversion of residues	Material Sciences and Process Engineering	Christoph Pfeifer

www.boku.ac.at/bioconversion.html