Research Agenda "BIOBASED INDUSTRY" contracted by BMVIT

Andreas Windsperger, Bernhard Windsperger, Thomas Timmel Worked out in cooperation of

bioenergy2020+

VEREINIGUNG DER ÖSTERREICHISCHEN PAPIERINDUSTRIE

"....a resource economy oriented on and embedded in natural cycles, that provides the world with healthy food and high-quality products out of biogen resources in a sustainable way...."

Ways of Utilisation of biogen resources

Use of the Synthesis of Nature – Separation, maybe some modification

- Wood, straw,...
- Cellulose, starch, lignin, hemicelluloses
- Fat, oil
- Protein, colorizers, pestizides.....
- (bio)chemical conversion of the biogen basic materials to intermediates - Ethanol, lactic acid, butyric acid, butandiol, furfural...
- complete destruction to Syn-gas, gasification to CH₄, CO + H₂

© Institut für Industrielle Ökologie

Considered options

- Increased application of natural materials like natural fibers in technical application and in the market for textiles
- Manufacturing of chemical bulk materials (mostly) from biogenic materials
- Preferably complete utilisation of biogenic materials in the sense of integrated biorefinery

Platform-Chemicals as turning point

- Production of bulk chemicals with efficient processes
 - biotechnological conversion (aerob, anaerob),
 - Physico-chemical (separation, milling, pressing)
 - thermo-chemical (gasification, pyrolysis).
- Raw materials could be
 - Sugar or starch containing substrates or hydrolysates
 - Residues of wood processing
 - Residues of processing of NAWAROS

Bulk chemicals - selection

Plattformchemikalien (Bsp.)			
C3 • Acrylsäure • Brenztrau-	 C4 Asparagin- säure 	C5 • Furfural • Glutamin-	C6 • Adipinsäure • 2,5-Furan-
 bensäure Glycerin 3-Hydroxy- propion- säure Milchsäure 1,3-Propandic 	 1,4-Butandiol Fumarsäure Bernsteinsäure Tetrahydrofuran 	säure • Itakonsäure • Lävulinsäure • Milchsäure- ethylester • Xylitol	dicarboxyl- säure • Gluconsäure • Isosorbid • Sorbit

Propylenglykol

D

Possible value chain

© Institut für Industrielle Ökologie

7 / 24.10.2013

Promising Options

- Furandicarbonic acid as substitute for PET
 - Conversion and raw material as challenge
- Intermediates through Fermentation
 - Ethanol fermentation of black liquor as 2nd generation biofuel
 - Succinic acid or Butanediol fermentation
- Resins and Tallöl
 - Option for pulp industry
- Lignin as a bulk chemical
 - Phenol as a basic building block for resins

Promising products – biofuels

Residue potential for biofuels:

- Biodiesel from waste-fat
- Biodiesel from animal-fat
- Biodiesel from tall oil
- Biomethan from the fermentation of grass, waste material or algae
- Bioethanol from lignocellulose (corn-cobs, straw)
- Bio hydrogen
- Know-how in Austria available
- Limitation through the definition "Biobased Industry"
 - No competition with food products
 - No thermal destruction of the synthesis of nature
- High policy influence

Recommendations (I)

Fostering innovation with specific calls:

- Strategies for improved value adde chains from national resources
- Fostering technology development in promising sectors exploration, clustering
- Suppurt of international linkage financial support of networking events
- Awareness raising about the utility of biobased products – events, disemination of information

Recommendations (II)

Economy-close realisation – supporting the Austrian companies (in Cooperation):

- Realising biorefineries
 - Expansion and diversification of existing plants
 - Creation of value-chains
- New business models Joint Ventures between provider and consumer for creating value-chains
- Use the location in central Europe Assistence of firms by applying patented techniques

Thank you for attention!

bioenergy2020+

VEREINIGUNG DER ÖSTERREICHISCHEN PAPIERINDUSTRIE

