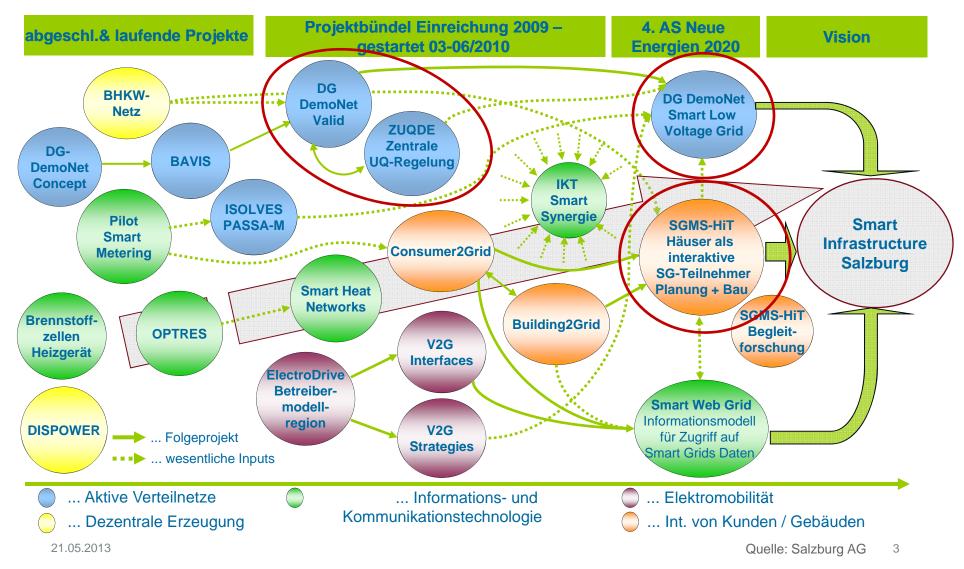


Österreichische Smart Grid Modellregionen im internationalen Kontext

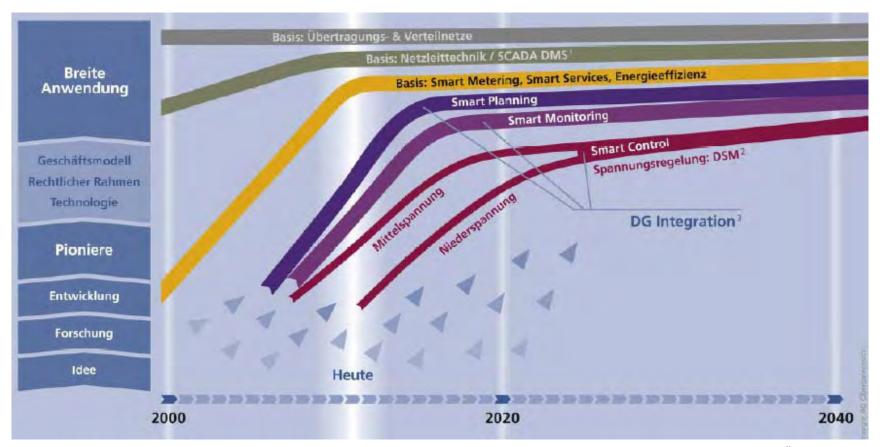
Highlights aus der Energieforschung – Systemintegration von Wärme und Strom in zukünftigen urbanen Systemen

Helfried Brunner Austrian Institute of Technology Energy Department 22.05.2013, Urania Wien

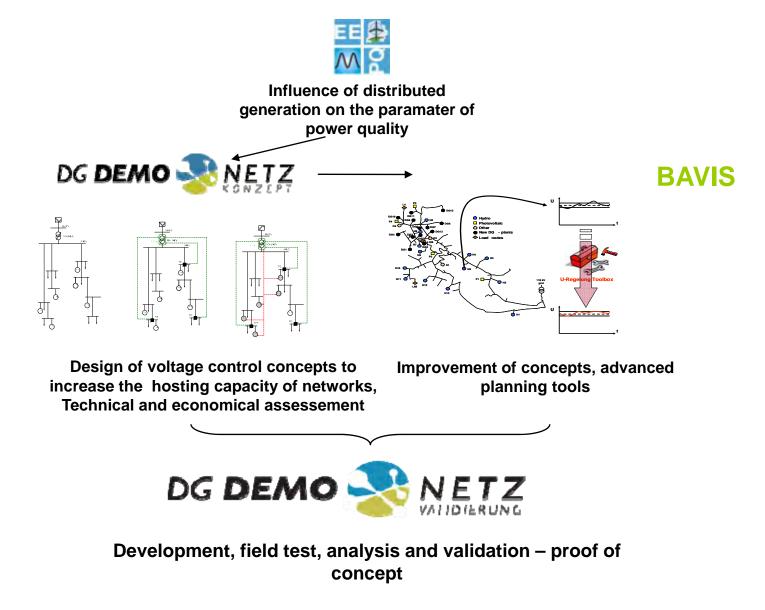


Content

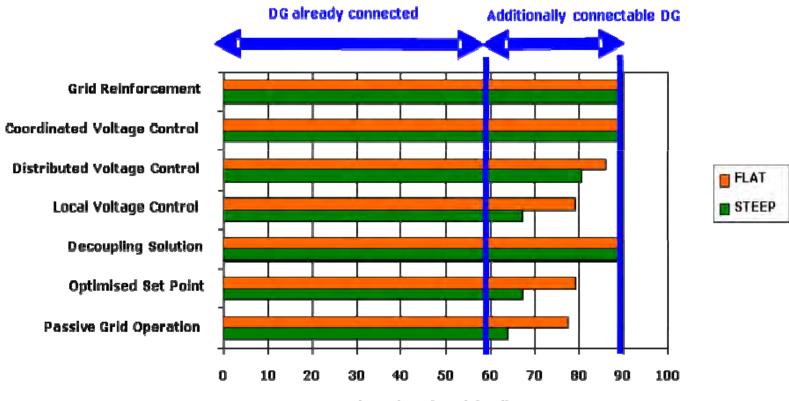
- Austrian Smart Grid Model and Pioneer Regions and related projects
- Role of National Projects
- Austrian Contributions to SET Plan
 - EEGI
 - EERA
 - FP7
- International Collaboration
- Conclusions



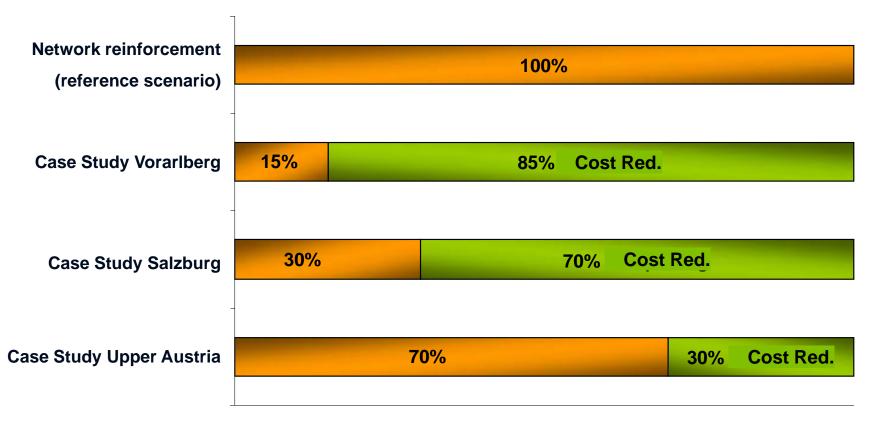
Smart Grid Model Region Salzburg


Smart Grid Pioneer Region Upper Austria

Quelle: Andreas Abart, Energie AG OÖ Netz GmbH


Project chain - DG DemoNet

Technical Investigations (Case Study 1)


Case study 1: connectable DG shares for different grid integration strategies

DG share (% of peak load)

High economical advantages are expected

Costs and cost reductions compared to the reference scenario network reinforcement

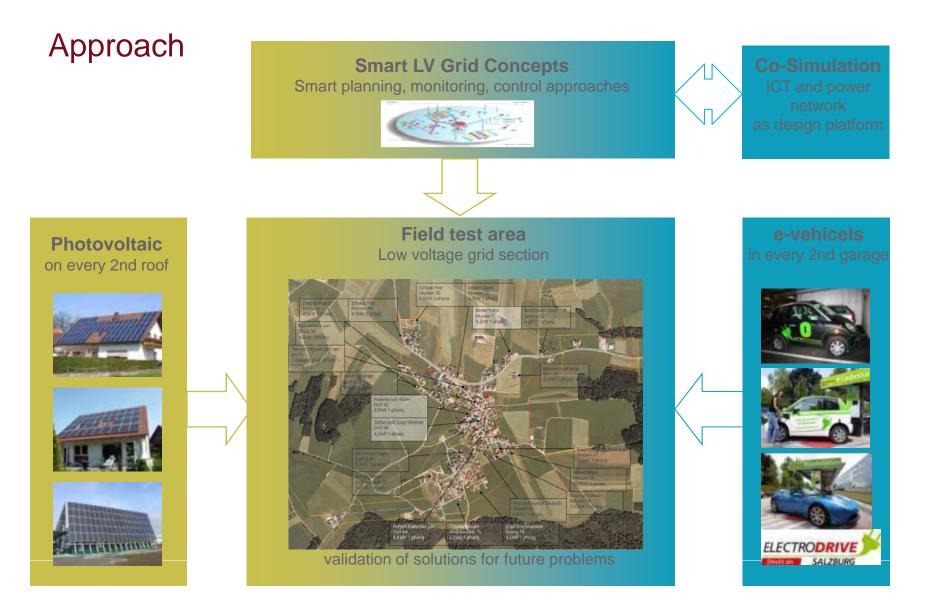
Project DG DemoNet Smart LV Grid

Increase the hosting capacity of LV networks based on:

1. Intelligent planning

 \rightarrow new planning methods enabling higher DER densities

2. Intelligent monitoring

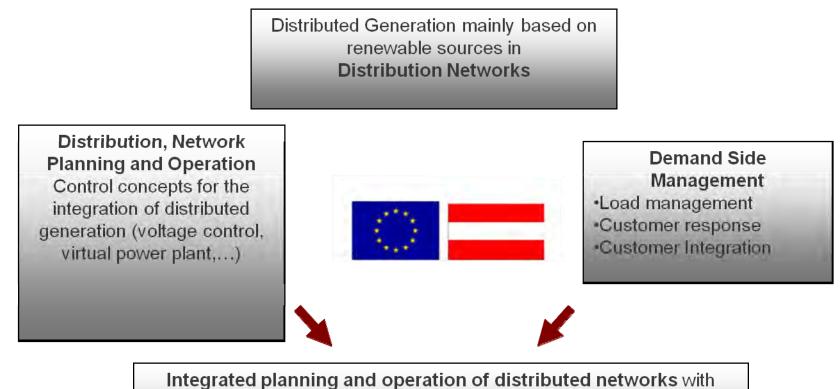

 \rightarrow new monitoring solutions for grid planning and operation

3. Active management and control using communication infrastructures restricted in bandwidth and availability

 \rightarrow new and cost-effective active control solution approach

Project DG DemoNet Smart LV Grid Field Tests

LV Grid Salzburg-**Köstendorf**: **Village**


30/0,4 kV - 250 kVA Transformer 6 branches up to 1000 m 95 buildings / 127 customers households, school, doctor, building, store, carpentry, local authority, 1 farm 0,6 GWh/a 210 kW maximum load 40 PV-Systems roof top 180 kWp 37 e-cars Building automation for demand side management LV Grid Upper Austria-Eberstalzell: Village 30/0,4 kV – 630 kVA Transformer 11 branches up to 600m 165 Buildings/Customers - 173 customers 150 Households, backery, haircutter, butcher, church, car-service, bank, comunal services, nursing home... 1,3 GWh/a 450 kW maximum load

60 PV-Systems roof top 330kWp

LV Grid Upper Austria-Littring: rural area 30/0,4 kV – 250 kVA Transformer 5 branches up to 1 km 54 Buildings/Customers 15 farmers, 8 Housholds, 1 small saw mill, 1 fishfarm 0,35 GWh/a 120 kW maximum load 15 PV-Systems roof top 140 kWp

Austrian Smart Grid Focus

consumer integration (load management, e-mobility;...) with a high share of distributed generation

Supporting the SET Plan

European Industrial Initiatives: public-private partnerships

- Electricity grids, Wind, Solar, Carbon capture and storage, Bio-energy, nuclear, smart cities, Hydrogen & fuel cells
- ✓ EEGI Electricity Grid Initiative

European Energy Research Alliance (EERA)

- Smart grids, Smart Cities, Wind, Solar- PV & CSP, Carbon capture and storage, biofuels, marine energy, geothermal, materials for nuclear
- ✓ AIT is member of the EERA ExCo
- ✓ Participation in Smart Grids, PV and Smart Cities

Functional projects/objectives according to the EEGI Roadmap

SMART GRIDS MODEL

Level 5: Smart Customers

Customers aware and actively participating

Level 4: Smart Energy Management Management of end-use energy efficiency, aggregation, retail

Level 3: Smart Integration Renewable energy, DG, electric vehicles, electricity storage and aggregation

SMART GRIDS Functional level

Level 2: Smart Distribution network

More automated MV distribution networks with self healing capabilities. Monitored and controlled LV networks ICT supported processes

Functional projects

Cluster 1: Integration of smart customers

- **D1. Active Demand Response**
- D2. Energy Efficiency from integration with Smart Homes

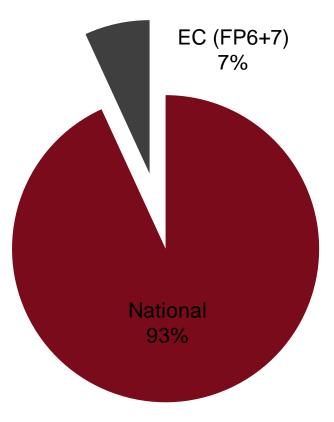
Cluster 2: Integration of smart metering

- D3. Metering infrastructure
- D4. Smart metering data processing

Cluster 3: Integration of DER and new uses

- **D5. DSO integration of small DER**
- D6. System integration of medium DER
- D7. Integration of storage in network mgt
- D8. Infrastructure to host EV/PHEV

Cluster 4: Smart Distribution Network


- D9. Monitoring and control of LV network
- D10. Automation and control of MV network
- D11. Methods and system support
- **D12. Integrated communication solutions**
- Functional projects/objectives shall be implemented by local demonstration projects and related research projects

Importance of individual national contributions

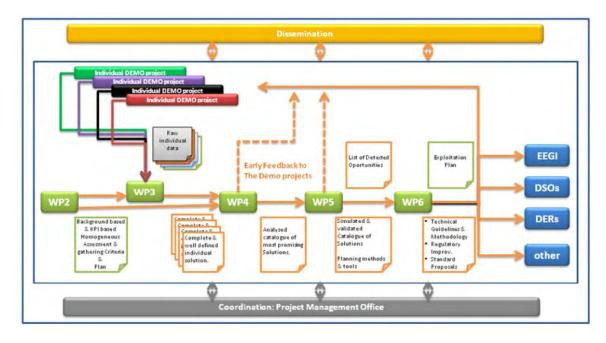
EEGI MSI - Project and investment overview

- 203 European projects in total
 - 111 projects with significant demo part;
 15 projects EC-funded, 189 MS-funded
- Budget for SG projects on national level €
 2.5bn acc. to JRC
- Budget for SG projects on EU level: €
 184m acc. to JRC (FP6 and FP7 funding)
- → Lots of results but lack of European-wide coordination

Smart Grid investment

Strategic Cooperations in Europe

- European Electricity Grid Initiative (EEGI):
 - Roadmap on the Implementation of Smart Grids and Member State Initiative "A pathway towards functional projects for distribution grids"
 - Grid+ project
- European Energy Research Alliance:
 - Joint Program Smart Cities
 - Joint Program Smart Grids
 - Joint Program PV
- ERA-Net Smart Grids European transnational program cooperation
- DERlab:
 - Laboratory Infrastructure with Focus on Distributed Energy Resrouces
- Smart Grids D-A-CH Technology cooperation



EU Project iGREENGrid

 Establish a family of relevant national projects focused on the effective integration of variable distributed generation in power distribution grids.

EU Project iGREENGrid

- The analysis will be done in two steps:
 - analysis at demo project level (scalability)
 - analysis at European wide level with reference networks (replicability).
- In parallel an economic assessment of the different solutions will be performed (cost/benefit analysis) taking into account challenges for the future DSO regarding the integration of renewable energy in high scale:
 - Connection
 - Balancing
 - Signalling

Considering not only methods to increase the hosting capacity levels but also curtailment criteria and procedures: technical, economic and respectability processes.

EU Project S3C

Support the energy utility of the future to effectively cooperate with

- smart consumers, who want to
 - reduce energy consumption and costs
 - change lifestyle routines
- *smart customers*, who want to get services to become
 - a prosumer, i. e. produce as well as consume energy
 - a market partner providing consumption flexibility or energy services
- smart citizens, who want to
 - become part of a 'smart energy community'
 - help ensure quality of supply and environment preservation

EU Project S3C

Expected Results

- interactive toolkit with robust guidance for practitioners
- report with detailed case analyses of 'Family of Projects' members who used the tools and the guidelines
- general and country specific recommendations for policy makers, regulatory and standardisation bodies and associations to support setting favourable framework conditions

Strategic Cooperations

- International Energy Agency (IEA):
 - IEA PVPS: AIT leads the Task 14: "High-Penetration of PV Systems in Electricity Grids"
 - IEA ENARD: Annex II: "DG System Integration in Distribution Networks"
 - International Smart Grid Action Network (ISGAN)

IEA ISGAN in a nutshell

- High level government attention and action to accelerate work-wide development and deployment of smarter electricity grids
- Facilitates dynamic knowledge sharing, technical assistance, peer review and, where appropriate, project coordination
- Sponsors activities that accelerate smart grid deployment and address knowledge gaps
- Fulfils a key recommendation in the smart grids technology action plan

ISGAN General Information

- Was launched as International Smart Grid Action Network (ISGAN) at the first Clean Energy Ministerial (CEM) in July 2010.
- Bringing together participants from 23 countries and the European Commission
- ISGAN is executed under a cooperative framework created by the International Energy Agency (IEA)
- Korea Smart Grid Institute (KSGI) was selected by the Executive Committee as ISGAN's Operating Agent for a 3 year term and is operating the IEA ISGAN secretariat

Participants

- Australia
- Austria
- Belgium
- Canada
- China
- Finland
- France
- Germany
- India
- Ireland
- Italy
- Japan
- Spain
- Sweden
- Korea

- Mexico
- Netherlands,
- Norway
- Russia
- South Africa,

- Spain
- Sweden
- Switzerland
- United Kingdom
- United States

Annexes

- 1. Global Smart Grid Inventory of enabling programs and policies
- 2. Smart Grid Case Studies using a common framework and metrics
- **3.** Benefit/Cost Methodologies (bottom-up & top-down) and related policy toolkits to asses smart grid investments
- **4.** Synthesis of Insights for High-level Decision Makers (e.g., CEM Ministers) from ISGAN and other related projects
- 5. SIRFN Smart Grids International Research Facilities Network
- 6. Power System Transmission and Distribution integrating renewables in the power system

SmartEST- Laboratory

- Total Budget:
- Installation and Commissioning:
- Objective:
 - Excellent environment for R&D, testing and verification in the field of large scale DG/RES grid integration and Smart Grids applications

3.5 Mio FUR

July 2012 – April 2013

- New analysis methods include real-time (RT) Power-Hardware-in-theloop (P-HIL) combining close-to-reality hardware system tests with the advantages of numerical simulation
- Implementation:
 - Methods developed within DG-EV-HIL will be applied to
 - the infrastrucure (SCADA)
 - testing approaches (P-HIL)

Conclusions

- International cooperation is important to gain synergies and investigate replicability and saleability of national project results
- Strong contribution from Austrian projects and model regions with the focus on distribution networks both
 - European Level (EEGI, EERA, FP7)
 - and International Level (IEA)

AIT Austrian Institute of Technology

your ingenious partner

Helfried Brunner

Energy Department Electric Energy Systems AIT Austrian Institute of Technology Österreichisches Forschungs- und Prüfzentrum Arsenal Ges.m.b.H. Giefinggasse 2 | 1210 Vienna | Austria T +43(0) 50550- 6283 | F +43(0) 50550-6390 Helfried.brunner@ait.ac.at | http://www.ait.ac.at