

EUWP Workshop From Energy Efficient Buildings to Smart Cities

Heating and Cooling in a Smart City

Hermann Halozan Graz University of Technology

Hal 1

rug

Hal 10

Hal 11

TUG

Carnot, Sadi (1796-1832)

Hal 13

Hal 14

Hal 15

Ideal and Real Power Consumption E_x/Q for Refrigeration and Air Conditioning and Space Heating by Heat Pumps and by Cogeneration

Typical Primary and Useful Energy Ratios

 $UER = (PER/\eta_B)(\eta_{d,el}/\eta_{d,fuel})$

	Coal (and	Gas	Electricity from	Nuclear
	Biomass)		Renewables (hydro, wind)	
Efficiencies				
Power plant, η_{PP}	0.4	0.55	1.0	0.33
Boiler (local conversion), η_B	0.8	0.98	1.0	1.0
<u>PER for SPF = 4</u>				
PER = SPF. η_{PP}	1.6	2.20	4.0	1.33
$UER = PER/\eta_B$	2.0	2.24	4.0	1.33
<u>PER for SPF = 5</u>				
PER = SPF. η_{PP}	2.0	2.75	5.0	1.67
$UER = PER/\eta_B$	2.5	2.81	5.0	1.67

Hal 17

ΉG

Renewable Energy Gained

 $\mathbf{R} = \mathbf{Q} - \mathbf{E} = \mathbf{Q} - \mathbf{Q}/\mathbf{SPF} = \mathbf{Q}(1 - 1/\mathbf{SPF})$

EUWP Workshop "From Energy Efficient Buildings to Smart Cieties", Vienna, March 26, 2012

Hal 21

Hal 22

Gründung von Hochhäusern

Hochhaus MAX, Frankfurt / Main (A: Murphy/Jahn, I: Werner Sobek Ingenieure)

enercret energy piles

Hal 42

CO₂ Reductions by Scenario

Note: Excludes the impact of improved building shells on reducing heating and cooling loads.

Low-carbon energy technology roadmaps

Hal 43

TUG

© OECD/IEA 2009

iea

Hal 44

Contributory factors in CO2 reduction, 2002-2030

Increased renewables in power generation

Improvements in end-use efficiency contribute for more than half of decrease in emissions, and renewables use for 20%

EUWP Workshop "From Energy Efficient Buildings to Smart Cieties", Vienna, March 26, 2012

Hal 45

rug